
Maribel Fernández¹, Hélène Kirchner², Bruno Pinaud³, and Jason Vallet³

¹ King’s College London, Department of Informatics, Strand, London WC2R 2LS, UK maribel.fernandez@kcl.ac.uk
² Inria, 200 avenue de la Vieille Tour, 33405 Talence, France helene.kirchner@inria.fr
³ University of Bordeaux, LaBRI CNRS UMR 5800, 33405 Talence Cedex, France firstname.lastname@u-bordeaux.fr

Abstract. This document provides the specification of PORGY’s strategy language: concrete syntax illustrated with examples.

PORGY is a visual, interactive modelling tool based on port graph rewriting. In PORGY, system states are represented by port graphs, and the dynamic evolution of the system is defined via port graph rewrite rules. Strategy expressions are used to control the application of rules, more precisely, strategy expressions indicate both the rule to be applied at each step in a rewriting derivation, and the position in the graph where the rule is applied (the latter is done via focusing constructs).

Some of the strategy constructs are strongly inspired from term rewriting languages such as ELAN [Borovanský et al., 1998], Stratego [Visser, 2001] and Tom [Balland et al., 2007]. Focusing operators are not present in term rewriting languages (although they rely on implicit traversal strategies). The direct management of positions in strategy expressions, via the distinguished position and banned subgraphs in the target graph and in a located port graph rewrite rule are original features of the language and are managed using positioning constructs.

This document describes the concrete syntax of strategy expressions, explains how the different kinds of constructs are used, and provides examples.

For more information on PORGY we refer the reader to [Pinaud et al., 2012] (interactive features), [Andrei et al., 2011] for preliminary version of the language and, [Fernández et al., 2012, Vallet et al., 2015] (social network examples).

Concrete Syntax for Writing Strategies

The syntax of the strategy language is given in Table 1. Strategy expressions are generated by the grammar rules from the non-terminal S. A strategy expression combines applications of located rewrite rules, generated by the non-terminal A, and position updates, generated by the non-terminal U, using focusing expressions generated by F.
The syntax presented here extends the one in [Fernández et al., 2012] by including a language to define subgraphs of a given graph by specifying simple properties, expressed with attributes of nodes, edges and ports.

Let L, R be port graphs; M, N subgraphs of R; W a subgraph of L; $n, k \in \mathbb{N}$; $\pi_i = \ldots = \pi_n \in [0, 1]$; $\sum_{i=1}^{n} \pi_i = 1$. Let attribute be an attribute;

e a valid expression (quoted string, integer or double);

function a computable function with arguments in parameters list;

“script.py” a Python script which returns the probability distribution.

$[x]$ means the item x is optional.

\[\begin{array}{|c|c|}
\hline
\text{(Comments)} & / \ast \ldots / | // \ldots \n \\
\hline
\text{(Probabilities)} & \Pi ::= \{\pi_1, \ldots, \pi_n\} | “script.py” \\
\hline
\text{(Transformations)} & T ::= L \Rightarrow R | (T \parallel T) \\
& \quad \mid \text{ppick}(T_1, \ldots, T_n, \Pi) \\
\hline
\text{(Applications)} & A ::= \text{all}(T) | \text{one}(T) \\
\hline
\text{(Focusing)} & F ::= \text{crtGraph} | \text{crtPos} | \text{crtBan} \\
& \quad \mid F[\cap]F | F[\cup]F | F \setminus F | (F) | [\text{emptySet}] \\
& \quad \mid \text{ppick}(F_1, \ldots, F_n, \Pi) \\
& \quad \mid \text{property}(F, \text{Elem}[\ldots, \text{Expr}]) \\
& \quad \mid \text{ngb}(F, \text{Elem}[\ldots, \text{Expr}]) \\
\hline
\text{(Determining)} & D ::= \text{all}(F) | \text{one}(F) \\
\hline
\text{(Updating)} & U ::= \text{setPos}(D) | \text{setBan}(D) \\
& \quad \mid \text{update}(\text{function}(\text{parameters list})) \\
\hline
\text{(Properties)} & \text{Elem} ::= \text{node} | \text{edge} | \text{port} \\
& \quad \mid \text{attribute} \ Relop \ e | \text{Expr} \& \& \text{Expr} \\
& \quad \mid \text{all}(F) | \text{one}(F) \\
\hline
\hline
\end{array}\]

Table 1. Concrete Syntax of the Strategy Language.

We start by defining the necessary syntax to write comments, then Rule constructs, which specify how to apply rules, Position constructs, which allow...
us to specify subgraphs P and Q in a given located graph. We finally define Composition constructs combining strategies.

Comments. We use C-style comments (/ * ...comments... * /) for general multi-line comments and C++-style comments for one line comment (/\ ...\n).

Rule Constructs. The simplest transformation is a located rule, which can only be applied to a located graph G_P^Q if at least a part of the redex is in P, and does not involve Q. The syntax $T \parallel T'$ represents simultaneous application of the transformations T and T' on disjoint subgraphs of G; it succeeds if both are possible *concurrently*, and it fails otherwise.

- $\text{pick}(T_1, \ldots, T_n, II)$ picks one of the transformations for application, according to the probability distribution II. If T and T' have respective probabilities π and π', $T \parallel T'$ has probability $\pi \times \pi'$.
- $\text{all}(T)$ denotes all possible applications of the transformation T on the located graph at the current position, creating a new located graph for each application. In the derivation tree, this creates as many children as there are possible applications.
- $\text{one}(T)$ computes only one of the possible applications of the transformation and ignores the others; more precisely, it makes a choice between all the possible applications, with equal probabilities.

Position Constructs. The grammar for F generates focusing expressions that are used to define positions for rewriting in a graph, or to define positions where rewriting is not allowed. They denote functions used in strategy expressions to change subgraphs P and Q in the current located graph G_P^Q (e.g., to specify graph traversals).

- Focusing constructs
 - crtGraph, crtPos and crtBan, applied to a located graph G_P^Q, return respectively the whole graph G, P and Q.
 - $\text{property}(F, \text{Elem}[,Expr])$, applied to a located graph G_P^Q, is used to select elements of G_P^Q filtered by F that satisfy a certain property, specified by $Expr$. It can be seen as a filtering construct: if the expression F defines a subgraph G then $\text{property}(F, \text{Elem}, Expr)$ returns a subgraph G' of G that satisfies the decidable property $Expr$. Depending on the value of Elem, the property is evaluated on nodes, ports, or edges, allowing us for instance to select the red nodes and red edges, or nodes with active ports, as shown in examples below. If $Expr$ is not specified, it is considered as the Boolean expression $true$ to allow to select all elements indicated by $Elem$.
 * $\text{property}(F, \text{node}, \text{Name} == \text{"Add"})$ returns all the nodes of the subgraph defined by the expression F that are named Add.
 * $\text{property}(F, \text{port}, \text{Active} == \text{"true"})$ returns all the nodes of the subgraph defined by the expression F that have at least one port with an attribute $Active$ with the value $true$.

∗ property\((F, node, Colour == Valid)\) returns all the nodes of the subgraph defined by the expression \(F\) that have the same values for the attributes \(Colour\) and \(Valid\).

∗ property\((F, edge, StateE > 3)\) returns all the edges (including the nodes at their extremities) of the subgraph defined by the expression \(F\) that have an attribute \(StateE\) with a value greater than 3.

∗ property\((F, node, Name =~ "^Num[0-9]$"')\) returns all the nodes of the subgraph defined by the expression \(F\) with a name valid over the regular expression "^Num[0-9]$" (the name must start by the string "Num" and terminate by a number). This syntax is inspired by languages such as Perl, Java or the more recent C++11.

∗ property\((F, port, Name == "Principal" && State == "Active")\) returns all nodes having at least one port named “Principal” which also has an attribute \(State\) set to “Active”.

\(\text{ngb}(F, \text{Elem}[\{, Expr\}])\), applied to a located graph \(G\), returns a subset of the neighbours (i.e., adjacent nodes) of \(F\) according to \(Expr\). When \(edge\) is used as the element (i.e., when we write \(\text{ngb}(F, edge, Expr)\)), it returns all the neighbours of \(F\) connected to \(F\) via edges which satisfy the expression \(Expr\).

∗ \(\text{ngb}(F, node, Name == "Add")\), returns all the nodes that are adjacent to nodes named \(Add\) in \(F\) but are not in \(F\) themselves (i.e., it returns the neighbours of the nodes in \(F\) named \(Add\)).

∗ \(\text{ngb}(F, port, Active == "true")\) returns all the nodes not already in \(F\) that are adjacent to nodes that have a port with an attribute \(Active\) set to the value \(true\).

∗ \(\text{ngb}(F, edge, State > 3)\) returns the nodes (not already in \(F\)) at the other extremity of edges connected to nodes in \(F\), where the edge has an attribute \(State\) with a value greater than 3.

∗ \(\text{ngb}(F, edge)\) returns all the nodes adjacent to nodes in \(F\) and not already in \(F\).

\(\cup\), \(\cap\) and \(\setminus\) are union, intersection and complement of port graphs; \(\emptySet\) denotes the empty graph. We assume the usual priorities (e.g., intersection has priority over union) and operations of the same priority are evaluated left to right.

We can combine multiple \(\text{Property}\) operators using intersection \(\cap\) to filter multiple times. For example, to select the nodes in the subgraph denoted by \(Pos\) that are names \(Mult\) and that have at least one port named \(Aux\) we write:

\[
\text{all}(\text{property} Pos, node, Name == "Mult") \cap \text{property} Pos, port, Name == "Aux")
\]

When nodes have more than one port, strategies

\[
\text{all}(\text{property} F, port, Name == "P") \cap \text{property} F, port, State == "Active")
\]
and

\[\text{all} (\text{property}(F, \text{port}, \text{Name} == "P" \&\& \text{State} == "Active")) \]

are not equivalent. The first strategy returns nodes having at least one port named “P” and another port (same port or not) with the attribute \text{State} set to “Active”. The latter strategy returns nodes having at least one port which satisfies both conditions at the same time.

- \text{ppick}(F_1, \ldots, F_n, II) picks one of the positions for application, according to the given probability distribution.

Determine Constructs.

- \text{one}(F) returns one node in \(F \) chosen at random and \text{all}(F) returns the full \(F \).

Update Constructs.

- \text{setPos}(D) \ (\text{resp. setBan}(D)) sets the position subgraph \(P \) (resp. \(Q \)) to be the graph resulting from the expression \(D \). It always succeeds (i.e., returns id).

- \text{update}(\text{function}_\text{name}\{\text{parameters}_\text{list}\}) \ updates attributes and their values in the graph using an external \TULIP\ plugin, with given parameters. The plugin must be loaded by \TULIP\ and in the “\text{Porgy}” group\footnote{See the \TULIP\ documentation for more information on plugins.}.

 The syntax is the following:

\[\text{update}("\text{plugin}_\text{name}"\{\text{param}_1 : \text{value}, \ldots, \text{param}_n : \text{value}\}) \]

If a parameter is not given, its default value will be used. If the plugin does not have parameters using \text{update}("\text{plugin}_\text{name}"") is enough. If a plugin name or a parameter name is not valid, an error will be raised and the strategy will not be executed. This is useful to update global properties of the graph, in order to focus on specific nodes. For example, in social networks, selecting a “central” node. This is also a way of interfacing with another language (e.g. a Python program or a plugin written outside \text{Porgy}).

Composition Constructs. The grammar for \(S \) involves, beyond previous constructs, an additional class \(C \) of comparison constructs, useful for checking conditions.

- Comparison constructs:

 - \(F = F' \) returns id if both expressions denote isomorphic port graphs (same sets of nodes, ports and edges), otherwise returns fail. \(F \neq F' \) returns id if the expressions do not denote isomorphic port graphs, otherwise returns fail. Similarly \(F[\text{subSet}]F' \ (\subset) \) checks whether \(F \) denotes
Maribel Fernández, Hélène Kirchner, Bruno Pinaud, and Jason Vallet

a subgraph of F'. We have also included an additional operation, which, although derivable from the rest of the language, facilitates the implementation: $\text{isEmpty}(F)$ returns id if F denotes the empty graph and fail otherwise. It is defined as $F = \text{emptySet}$.

- **match**(T) returns id if there exists a subgraph isomorphism from the left-hand side of T to the current graph taking into account the current position and banned subgraphs. In other words, $\text{match}(T)$ can be seen as an abbreviation of the strategy if(\text{one}(T))\text{then}(\text{id})\text{else}(\text{fail})$ (see below), but it is directly implemented to improve its efficiency.

- Strategies S are defined with the additional following constructs:
 - id and fail are two atomic strategies that respectively denote success and failure.
 - The expression $S;S'$ represents sequential application of S followed by S'.
 - if(S)\text{then}(S')[\text{else}(S'')] checks if the application of S on a copy of G_P^Q returns id, in which case S' is applied to the original G_P^Q, otherwise S'' is applied to the original G_P^Q. If S'' is not specified then we consider $S'' = \text{id}$.
 - (S)\text{orelse}(S') applies S if possible, otherwise applies S'. It fails if both S and S' fail.
 - repeat(S)[(k)] simply iterates the application of S until it fails, but, if k is specified between parenthesis, then the number of repetitions cannot exceed k.
 - while(S)\text{do}(S')[(k)] keeps on sequentially applying S' while the expression S succeeds on a copy of the graph. If S fails, then id is returned. If k between parenthesis is specified, then the number of iterations cannot exceed k.
 - try(S) behaves like S if S succeeds, but if S fails, it still returns id. It is a derived operation which is defined as (S)\text{orelse}(\text{id})
 - not(S) returns id (resp. fail) if S fails (resp. succeeds). This is also a derivable construct: it is defined as if(S)\text{then}(\text{fail})\text{else}(\text{id})
 - $\text{ppick}(S_1,\ldots,S_n,\Pi)$ picks one of the strategies for application, according to the given probability distribution. This construct generalises the probabilistic constructs on rules and positions seen above.

Using a Python Script with $\text{ppick}(T_1,\ldots,T_n,\Pi)$

The construct $\text{ppick}(T_1,\ldots,T_n,\Pi)$ picks one of the T operation according to the probability distribution Π. Π can be given as a list of probabilities, e.g., $\text{ppick}(T_1,\ldots,T_n,\{p_1,\ldots,p_n\})$ where $\sum_{i=1}^{n} p_i = 1$ or a Python script, e.g., $\text{ppick}(T_1,\ldots,T_n,\text{script.py})$ which computes and returns the probabilities.

The basename of the given Python script file (i.e. filename without path information and extension) is used as the name of the function to call inside the Python script. The function must have 5 parameters which are in this order: the graph used to apply the rules on, a list of rules to test, the position subgraph
and the banned subgraph. The script must return a Python array (TULIP library
does not support conversion from Python dictionary to C++ object) which has
as elements the name of a rule followed by its application probability and so
on for each rule. Note that, all modifications made by the Python script on the
graph structure are not kept. A sample Python script is given in Listing 1. See
the TULIP Python documentation for more details on using the TULIP API.

```
from tulip import tlp

def script(graph, rules, position, ban):
    #graph: the graph where the rule are applied
    #rules: list of all rules used in the ppick operator
    #position, ban: Tulip properties for resp. the Position and Ban set
    #compute a equiprobabilistic choice
    proba=[] #result list: a rule followed by its probability
    for r in rules:
        proba.append(r)
        proba.append(1/len(rules))
    return proba
```

Listing 1: Sample Python (v3) script to compute probabilities for a ppick oper-
ator given a set of rules.

Macros

The user interface of PORGY allows to define multiple strategies. From one strat-
egy, it is possible to call other strategies by surrounding the name of the strategy
to use by ‘#’. When the strategy is executed, each string ‘#x#’ is replaced by
the content of x. This operation is accessible through a mouse context menu.

Concrete Syntax for Computing Attributes Values

The value of any attribute of any element (nodes or ports) in the right-hand
side can be computed with a formula. There is a dedicated user interface in the
“Algorithm” configuration tab associated to each rule. All formulas associated to
a rule are stored into each rule and are separated by a semi-colon. Table 2 gives
the associated grammar. Up to now, we only support expressions for attributes
of type double or integer without mixing them.
Let $r \in \mathbb{R}$; Let $L = (V_L, P_L, E_L, D_L)$ and $R = (V_R, P_R, E_R, D_R)$ be port graphs (resp. left and right-hand side); with V the set of nodes, P the set of ports, E the set of edges, D the associated record; $n_L \in V_L, e_L \in E_L, p_L \in P_L$ (resp. n_R, e_R and p_R for R); attribute be an existing attribute.

Ω_L (resp. Ω_R) generates attribute values in records D associated with L (resp. R);

$[S]$ means the item S is optional.

<table>
<thead>
<tr>
<th>(Expression)</th>
<th>$S ::= \Omega_R = \Psi; [S]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Attribute access)</td>
<td>$\Omega_R ::= \text{node}(n_R).\text{attribute} ;</td>
</tr>
<tr>
<td>(Instruction)</td>
<td>$\Psi ::= r ;</td>
</tr>
</tbody>
</table>

Table 2. Grammar for rule formulas

For example, to compute a new value for an attribute called Σ of a node n where the value is a maximum between the old value and a ratio between the value of another attribute over a random number is written:

$$\text{node}(n).\Sigma = \text{max}(\text{edge}(e).\text{Influence}/\text{random}(1), \text{node}(n).\Sigma);$$

where n and e (and if necessary p) are the internal TULIP element identifier. This information is available through the “Get Information” interactor.

An Instruction always returns a double number and follows the standard mathematical priority. The construct $\text{random}(r)$ returns a double number $0 < x < r$; $\text{max}(x, y)$ (resp. $\text{min}(x, y)$) returns the maximum (resp. minimum) of both arguments.

References

