
Porgy Strategy Language: User Manual

Maribel Fernández1, Hélène Kirchner2, Bruno Pinaud3, and Jason Vallet3

1 King’s College London, Department of Informatics, Strand, London WC2R 2LS,
UK maribel.fernandez@kcl.ac.uk

2 Inria, 200 avenue de la Vieille Tour, 33405 Talence, France
helene.kirchner@inria.fr

3 University of Bordeaux, LaBRI CNRS UMR 5800, 33405 Talence Cedex, France
firstname.lastname@u-bordeaux.fr

Abstract. This document provides the specification of Porgy’s strat-
egy language: concrete syntax illustrated with examples.

Porgy is a visual, interactive modelling tool based on port graph rewriting.
In Porgy, system states are represented by port graphs, and the dynamic evo-
lution of the system is defined via port graph rewrite rules. Strategy expressions
are used to control the application of rules, more precisely, strategy expressions
indicate both the rule to be applied at each step in a rewriting derivation, and
the position in the graph where the rule is applied (the latter is done via focusing
constructs).

Some of the strategy constructs are strongly inspired from term rewriting
languages such as Elan [Borovanský et al., 1998], Stratego [Visser, 2001] and
Tom [Balland et al., 2007]. Focusing operators are not present in term rewrit-
ing languages (although they rely on implicit traversal strategies). The direct
management of positions in strategy expressions, via the distinguished position
and banned subgraphs in the target graph and in a located port graph rewrite
rule are original features of the language and are managed using positioning
constructs.

This document describes the concrete syntax of strategy expressions, explains
how the different kinds of constructs are used, and provides examples.

For more information on Porgy we refer the reader to [Pinaud et al., 2012]
(interactive features), [Andrei et al., 2011] for preliminary version of the lan-
guage and, [Fernández et al., 2012,Vallet et al., 2015] (social network examples).

Concrete Syntax for Writing Strategies

The syntax of the strategy language is given in Table 1. Strategy expressions are
generated by the grammar rules from the non-terminal S. A strategy expression
combines applications of located rewrite rules, generated by the non-terminal A,
and position updates, generated by the non-terminal U , using focusing expres-
sions generated by F .

2 Maribel Fernández, Hélène Kirchner, Bruno Pinaud, and Jason Vallet

The syntax presented here extends the one in [Fernández et al., 2012] by
including a language to define subgraphs of a given graph by specifying simple
properties, expressed with attributes of nodes, edges and ports.

Let L,R be port graphs; M,N subgraphs of R; W a subgraph of L;

n, k ∈ N; πi=1...n ∈ [0, 1];
n∑

i=1

πi = 1. Let attribute be an attribute;

e a valid expression (quoted string, integer or double);

function a computable function with arguments in parameters list ;

“script.py” a Python script which returns the probability distribution.

[x] means the item x is optional.

(Comments) / ∗ . . . ∗ / | // . . . \n
(Probabilities) Π ::= {π1, . . . , πn} | “script.py”

R
u
le

s (Transformations) T ::= LW ⇒C RN
M | (T ‖ T)

| ppick(T1, . . . , Tn, Π)

(Applications) A ::= all(T) | one(T)

P
o
si

ti
o
n
s

(Focusing) F ::= crtGraph | crtPos | crtBan
| F [cup]F | F [cap]F | F \ F | (F) | [emptySet]
| ppick(F1, . . . , Fn, Π)

| property(F,Elem[, Expr])

| ngb(F,Elem[, Expr])

(Determining) D ::= all(F) | one(F)

(Updating) U ::= setPos(D) | setBan(D)

| update(function{parameters list})

P
ro

p
er

ti
es

(Properties) Elem ::= node | edge | port
Expr ::= attribute Relop e | Expr&&Expr

Relop ::= == | ! = | > | <

| =< | >= | =∼

C
o
m

p
o
si

ti
o
n
s (Comparison) C ::= F = F | F ! = F | F [subSet]F | isEmpty(F)

| match(T)

(Strategies) S ::= id | fail | A | U | C | S;S

| if(S)then(S)[else(S)] | (S)orelse(S)

| repeat(S)[(k)] | while(S)do(S)[(k)]

| try(S) | not(S) | ppick(S1, . . . , Sn, Π)

Table 1. Concrete Syntax of the Strategy Language.

We start by defining the necessary syntax to write comments, then Rule
constructs, which specify how to apply rules, Position constructs, which allow

Porgy Strategy Language: User Manual 3

us to specify subgraphs P and Q in a given located graph. We finally define
Composition constructs combining strategies.

Comments. We use C-style comments (/ ∗ . . . comments . . . ∗ /) for general
multi-line comments and C++-style comments for one line comment (// . . . \n).

Rule Constructs. The simplest transformation is a located rule, which can
only be applied to a located graph GQ

P if at least a part of the redex is in P ,
and does not involve Q. The syntax T ‖ T ′ represents simultaneous application
of the transformations T and T ′ on disjoint subgraphs of G; it succeeds if both
are possible concurrently, and it fails otherwise.

– ppick(T1, . . . , Tn, Π) picks one of the transformations for application, ac-
cording to the probability distribution Π. If T and T ′ have respective prob-
abilities π and π′, T ‖ T ′ has probability π × π′.

– all(T) denotes all possible applications of the transformation T on the lo-
cated graph at the current position, creating a new located graph for each
application. In the derivation tree, this creates as many children as there are
possible applications.

– one(T) computes only one of the possible applications of the transformation
and ignores the others; more precisely, it makes a choice between all the
possible applications, with equal probabilities.

Position Constructs. The grammar for F generates focusing expressions that
are used to define positions for rewriting in a graph, or to define positions where
rewriting is not allowed. They denote functions used in strategy expressions to
change subgraphs P and Q in the current located graph GP

Q (e.g., to specify
graph traversals).

– Focusing constructs
• crtGraph, crtPos and crtBan, applied to a located graph GQ

P , return
respectively the whole graph G, P and Q.

• property(F,Elem[, Expr]}, applied to a located graph GQ
P , is used to

select elements of GQ
P filtered by F that satisfy a certain property, spec-

ified by Expr. It can be seen as a filtering construct: if the expression F
defines a subgraph G then property(F,Elem,Expr) returns a subgraph
G′ of G that satisfies the decidable property Expr. Depending on the
value of Elem, the property is evaluated on nodes, ports, or edges, allow-
ing us for instance to select the red nodes and red edges, or nodes with
active ports, as shown in examples below. If Expr is not specified, it is
considered as the Boolean expression true to allow to select all elements
indicated by Elem.
∗ property(F, node, Name == “Add′′) returns all the nodes of the

subgraph defined by the expression F that are named Add.
∗ property(F, port, Active == “true′′) returns all the nodes of the

subgraph defined by the expression F that have at least one port
with an attribute Active with the value true.

4 Maribel Fernández, Hélène Kirchner, Bruno Pinaud, and Jason Vallet

∗ property(F, node, Colour == V alid) returns all the nodes of the
subgraph defined by the expression F that have the same values for
the attributes Colour and V alid.

∗ property(F, edge, StateE > 3) returns all the edges (including the
nodes at their extremities) of the subgraph defined by the expression
F that have an attribute StateE with a value greater than 3.

∗ property(F, node, Name =∼ “ˆNum[0-9]$
′′
) returns all the nodes

of the subgraph defined by the expression F with a name valid over
the regular expression “ˆNum[0-9]$” (the name must start by the
string “Num” and terminate by a number). This syntax is inspired
by languages such as Perl, Java or the more recent C++11.

∗ property(F, port, Name == “Principal′′&&State == “Active′′)
returns all nodes having at least one port named “Principal” which
also has an attribute State set to “Active”.

• ngb(F,Elem[, Expr]}, applied to a located graph GQ
P , returns a subset

of the neighbours (i.e., adjacent nodes) of F according to Expr. When
edge is used as the element (i.e., when we write ngb(F, edge, Expr)), it
returns all the neighbours of F connected to F via edges which satisfy
the expression Expr.

∗ ngb(F, node, Name == “Add′′), returns all the nodes that are adja-
cent to nodes named Add in F but are not in F themselves (i.e., it
returns the neighbours of the nodes in F named Add).

∗ ngb(F, port, Active == “true′′) returns all the nodes not already
in F that are adjacent to nodes that have a port with an attribute
Active set to the value true.

∗ ngb(F, edge, State > 3) returns the nodes (not already in F) at the
other extremity of edges connected to nodes in F , where the edge
has an attribute State with a value greater than 3.

∗ ngb(F, edge) returns all the nodes adjacent to nodes in F and not
already in F .

• [cup] (∪), [cap] (∩) and \ are union, intersection and complement of port
graphs; [emptySet] (∅) denotes the empty graph. We assume the usual
priorities (e.g., intersection has priority over union) and operations of
the same priority are evaluated left to right.
We can combine multiple Property operators using intersection ∩ to filter
multiple times. For example, to select the nodes in the subgraph denoted
by Pos that are names Mult and that have at least one port named Aux
we write:

all(property(Pos, node, Name == “Mult′′)∩
property(Pos, port, Name == “Aux′′))

When nodes have more than one port, strategies

all(property(F, port, Name == “P ′′)∩
property(F, port, State == “Active′′))

Porgy Strategy Language: User Manual 5

and

all(property(F, port, Name == “P ′′&&State == “Active′′))

are not equivalent. The first strategy returns nodes having at least one
port named “P” and another port (same port or not) with the attribute
State set to “Active”. The latter strategy returns nodes having at least
one port which satisfies both conditions at the same time.

• ppick(F1, . . . , Fn, Π) picks one of the positions for application, according
to the given probability distribution.

– Determine Constructs.
one(F) returns one node in F chosen at random and all(F) returns the full
F .

– Update Constructs.

• setPos(D) (resp. setBan(D)) sets the position subgraph P (resp. Q) to
be the graph resulting from the expression D. It always succeeds (i.e.,
returns id).

• update(function name{parameters list}) updates attributes and their
values in the graph using an external Tulip plugin, with given parame-
ters. The plugin must be loaded by Tulip and in the “Porgy” group4.
The syntax is the following:

update(“plugin name′′{param1 : value, . . . , paramn : value})

If a parameter is not given, its default value will be used. If the plugin
does not have parameters using update(“plugin name′′) is enough. If a
plugin name or a parameter name is not valid, an error will be raised
and the strategy will not be executed. This is useful to update global
properties of the graph, in order to focus on specific nodes. For exam-
ple, in social networks, selecting a “central” node. This is also a way of
interfacing with another language (e.g. a Python program or a plugin
written outside Porgy).

Composition Constructs. The grammar for S involves, beyond previous con-
structs, an additional class C of comparison constructs, useful for checking con-
ditions.

– Comparison constructs:
C includes comparison operators for graphs and a matching construct that
checks whether a rule matches the current graph.
• F = F ′ returns id if both expressions denote isomorphic port graphs

(same sets of nodes, ports and edges), otherwise returns fail. F != F ′

returns id if the expressions do not denote isomorphic port graphs, oth-
erwise returns fail. Similarly F [subSet]F ′ (⊂) checks whether F denotes

4 See the Tulip documentation for more information on plugins.

6 Maribel Fernández, Hélène Kirchner, Bruno Pinaud, and Jason Vallet

a subgraph of F ′. We have also included an additional operation, which,
although derivable from the rest of the language, facilitates the imple-
mentation: isEmpty(F) returns id if F denotes the empty graph and fail
otherwise. It is defined as F = emptySet.

• match(T) returns id if there exists a subgraph isomorphism from the
left-hand side of T to the current graph taking into account the cur-
rent position and banned subgraphs. In other words, match(T) can be
seen as an abbreviation of the strategy if(one(T))then(id)else(fail) (see
below), but it is directly implemented to improve its efficiency.

– Strategies S are defined with the additional following constructs:
• id and fail are two atomic strategies that respectively denote success and

failure.
• The expression S;S′ represents sequential application of S followed by
S′.

• if(S)then(S′)[else(S′′)] checks if the application of S on a copy of GQ
P

returns id, in which case S′ is applied to the original GQ
P , otherwise S′′

is applied to the original GQ
P . If S′′ is not specified then we consider

S′′ = id.
• (S)orelse(S′) applies S if possible, otherwise applies S′. It fails if both
S and S′ fail.

• repeat(S)[(k)] simply iterates the application of S until it fails, but, if k
is specified between parenthesis, then the number of repetitions cannot
exceed k.

• while(S)do(S′)[(k)] keeps on sequentially applying S′ while the expres-
sion S succeeds on a copy of the graph. If S fails, then id is returned. If
k between parenthesis is specified, then the number of iterations cannot
exceed k.

• try(S) behaves like S if S succeeds, but if S fails, it still returns id. It
is a derived operation which is defined as (S)orelse(id).

• not(S) returns id (resp. fail) if S fails (resp. succeeds). This is also a
derivable construct: it is defined as if(S)then(fail)else(id).

• ppick(S1, . . . , Sn, Π) picks one of the stategies for application, accord-
ing to the given probability distribution. This construct generalises the
probabilistic constructs on rules and positions seen above.

Using a Python Script with ppick(T1, . . . , Tn,Π)

The construct ppick(T1, . . . , Tn, Π) picks one of the T operation according to
the probability distribution Π. Π can be given as a list of probabilities, e.g.,
ppick(T1, . . . , Tn, {p1, . . . , pn}) where

∑n
i=1 pi = 1 or a Python script, e.g.,

ppick(T1, . . . , Tn, “script.py“) which computes and returns the probabilities.
The basename of the given Python script file (i.e. filename without path

information and extension) is used as the name of the function to call inside the
Python script. The function must have 5 parameters which are in this order: the
graph used to apply the rules on, a list of rules to test, the position subgraph

Porgy Strategy Language: User Manual 7

and the banned subgraph. The script must return a Python array (Tulip library
does not support conversion from Python dictionary to C++ object) which has
as elements the name of a rule followed by its application probability and so
on for each rule. Note that, all modifications made by the Python script on the
graph structure are not kept. A sample Python script is given in Listing 1. See
the Tulip Python documentation for more details on using the Tulip API.

1 from tulip import tlp

2 def script(graph, rules, position, ban):

3 #graph: the graph where the rule are applied

4 #rules: list of all rules used in the ppick operator

5 #position, ban: Tulip properties for resp. the Position and Ban set

6 #compute a equiprobabilistic choice

7 proba=[] #result list: a rule followed by its probability

8 for r in rules:

9 proba.append(r)

10 proba.append(1/len(rules))

11

12 return proba

Listing 1: Sample Python (v3) script to compute probabilities for a ppick oper-
ator given a set of rules.

Macros

The user interface of Porgy allows to define multiple strategies. From one strat-
egy, it is possible to call other strategies by surrounding the name of the strategy
to use by ‘#’. When the strategy is executed, each string ‘#x#’ is replaced by
the content of x. This operation is accessible through a mouse context menu.

Concrete Syntax for Computing Attributes Values

The value of any attribute of any element (nodes or ports) in the right-hand
side can be computed with a formula. There is a dedicated user interface in the
“Algorithm” configuration tab associated to each rule. All formulas associated to
a rule are stored into each rule and are separated by a semi-colon. Table 2 gives
the associated grammar. Up to now, we only support expressions for attributes
of type double or integer without mixing them.

8 Maribel Fernández, Hélène Kirchner, Bruno Pinaud, and Jason Vallet

Let r ∈ R; Let L = (VL, PL, EL, DL) and

R = (VR, PR, ER, DR) be port graphs (resp. left and right-hand side);

with V the set of nodes, P the set of ports, E the set of edges,

D the associated record;

nL ∈ VL, eL ∈ EL, pL ∈ PL (resp. nR, eR and pR for R);

attribute be an existing attribute.

ΩL (resp. ΩR) generates attribute values in records D

associated with L (resp. R);

[S] means the item S is optional.

(Expression) S ::= ΩR = Ψ ; [S]

(Attribute access) ΩR ::= node(nR).attribute | edge(eR).attribute

| port(pR).attribute

ΩL ::= node(nL).attribute | edge(eL).attribute

| port(pL).attribute

(Instruction) Ψ ::= r | ΩL | (Ψ) | −Ψ | Ψ op Ψ

| random(r) | max(Ψ, Ψ) | min(Ψ, Ψ)

op ::= + | − | × | / | %

Table 2. Grammar for rule formulas

For example, to compute a new value for an attribute called Sigma of a node
n where the value is a maximum between the old value and a ratio beetween the
value of another attribute over a random number is written:

node(n).Sigma = max(edge(e).Influence/random(1), node(n).Sigma);

where n and e (and if necessary p) are the internal Tulip element identifier.
This information is available through the “Get Information” interactor.

An Instruction always returns a double number and follows the standard
mathematical priority. The construct random(r) returns a double number 0 <
x < r; max(x, y) (resp. min(x,y)) returns the maximum (resp. minimum) of
both arguments.

References

[Andrei et al., 2011] Andrei, O., Fernández, M., Kirchner, H., Melançon, G., Namet,
O., and Pinaud, B. (2011). PORGY: Strategy-Driven Interactive Transformation of
Graphs. In Echahed, R., editor, 6th Int. Workshop on Computing with Terms and

Porgy Strategy Language: User Manual 9

Graphs, volume 48 of Electronic Proceedings in Theoretical Computer Science, pages
54–68.

[Balland et al., 2007] Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., and Reilles,
A. (2007). Tom: Piggybacking Rewriting on Java. In Baader, F., editor, Rewrit-
ing Techniques and Applications (RTA), volume 4533 of Lecture Notes in Computer
Science, pages 36–47. Springer.

[Borovanský et al., 1998] Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E.,
and Ringeissen, C. (1998). An overview of ELAN. ENTCS, 15.

[Fernández et al., 2012] Fernández, M., Kirchner, H., and Namet, O. (2012). A strat-
egy language for graph rewriting. In Vidal, G., editor, Logic-Based Program Synthesis
and Transformation, volume 7225 of Lecture Notes in Computer Science, pages 173–
188. Springer Berlin Heidelberg.

[Pinaud et al., 2012] Pinaud, B., Melançon, G., and Dubois, J. (2012). PORGY: A
Visual Graph Rewriting Environment for Complex Systems. Computer Graphics
Forum, 31(3):1265–1274.

[Vallet et al., 2015] Vallet, J., Kirchner, H., Pinaud, B., and Melançon, G. (2015). A
visual analytics approach to compare propagation models in social networks. In
Rensink, A. and Zambon, E., editors, Proceedings Graphs as Models, GaM 2015,
London, UK, 11-12 April 2015., volume 181 of Electronic Proceedings in Theoretical
Computer Science, pages 65–79.

[Visser, 2001] Visser, E. (2001). Stratego: A language for program transformation
based on rewriting strategies. System description of Stratego 0.5. In Proceedings of
the International Conference on Rewriting Techniques and Applications (RTA’01),
volume 2051 of Lecture Notes in Computer Science, pages 357–361. Springer-Verlag.

